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OUTLINE

• Introduction

• Structured matrices
and structure-preserving transformations

• Jacobi-type algorithm
for the reduction to the canonical form

• Finding the closest normal matrix with a given structure

• Numerical examples

E. Begović Kovač, H. Faßbender, P. Saltenberger: On normal and structured matrices

under unitary structure-preserving transformations. arXiv:1810.03369 [math.NA]

Erna Begović Kovač The closest normal structured matrix 2 / 24



INTRODUCTION

• Set of normal matrices: N = {X : XXH = XHX}

• X is normal if and only if there is unitary U such that

UHXU =

[
�

]
.

• A. Ruhe: Closest normal matrix finally found!
BIT 27 (4) (1987) 585–598.

Does NOT preserve given matrix structure.

Suppose that A has a structure S, A ∈ S.

Minimization problem:

min
{
‖A− X‖2

F : X ∈ N ∩ S
}
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MAXIMIZATION PROBLEM

Theorem (Causey 1964, Gabriel 1979)

Let A ∈ Cn×n and let X = ZDZH , where Z is unitary and D is
diagonal. Then X is a nearest normal matrix to A in the Frobenius
norm if and only if

(a) ‖diag(ZHAZ )‖F = max
QQH=I

‖diag(QHAQ)‖F , and

(b) D = diag(ZHAZ ).

→ Finding the closest normal matrix is equivalent to finding an
unitary transformation that maximizes Frobenius norm of the
diagonal.

→ This theorem has to be modified to fulfill structure-preserving
requirements.

• N. J. Higham: Matrix nearness problem and applications.
In Applications of Matrix theory 22 (1989) 1–27.
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STRUCTURED MATRICES

• Hamiltonian A (J-Hermitian):

(JA)H = JA, that is AH = JAJ, where J =

[
0 I
−I 0

]
.

We can write it as

A =

[
A11 A12

A21 −AH
11

]
, AH

12 = A12, A
H
21 = A21.

• Skew-Hamiltonian A (J-skew-Hermitian):

(JA)H = −JA, that is AH = −JAJ.

We can write it as

A =

[
A11 A12

A21 AH
11

]
, AH

12 = −A12, A
H
21 = −A21.

• For every skew-Hamiltonian W there is Hamiltonian H (and
viceversa) such that W = ıH.
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STRUCTURED MATRICES–cont.

• Per-Hermitian A (F -Hermitian):

(FA)H = FA, that is AH = FAF ,

where F =


0 · · · 0 1
... ··

·
0

0 ··
· ...

1 0 · · · 0

.
→ Hermitian about its anti-diagonal

• Perskew-Hermitian A (F -skew-Hermitian):

(FA)H = −FA, that is AH = −FAF .

→ Skew-Hermitian about its anti-diagonal

• For every perskew-Hermitian K there is per-Hermitian M (and
viceversa) such that K = ıM.
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STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is symplectic if MHJM = J.

• For per-Hermitian and perskew-Hermitian

M is perplectic if MHFM = F .
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CANONICAL FORM — HAMILTONIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal Hamiltonian A ∈ C2n×2n there is unitary
symplectic U such that

UHAU =

 D1 0 0 0
0 D2 0 D3

0 0 −DH
1 0

0 −D3 0 D2

,
where Dj , j = 1, 2, 3 diagonal matrices,
D1 ∈ Cn1×n1 , D2 ∈ ıRn2×n2 , D3 ∈ Rn2×n2 , n1 + n2 = n.

UHAU =

[
Λ1 Λ2

−Λ2 −ΛH
1

]
=

 � �
� �

 =: ΛH
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CANONICAL FORM — PER-HERMITIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal per-Hermitian A ∈ C2n×2n there is unitary
perplectic U such that

UHAU =

 D1 0 0 0
0 D2 D3 0
0 FD3F FD2F 0
0 0 0 FD1F

,
where D1 i D2 are diagonal, and D3 is antidiagonal matrix,
D1 ∈ Cn1×n1 , D2 ∈ Rn2×n2 , D3 ∈ Rn2×n2 , n1 + n2 = n.

UHAU =

[
Λ1 Λ2F
FΛ2 FΛH

1 F

]
=

 � �
� �

 =: ΛP
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MAXIMIZATION ALGORITHM

max
ZZH=I , Z∈Sp2n(C)

{
fH(Z ) := ‖diag(ZHAZ )‖2

F + ‖diag(JZHAZ )‖2
F

}

• Iterative algorithm of the form

A(k+1) = RH
k A(k)Rk , k ≥ 0.

• Transformations Rk are structure-preserving rotations
obtained by embedding two Jacobi rotations[

c −s
s c

]
:=

[
cosφ −eıα sinφ

e−ıα sinφ cosφ

]
in I2n.

They are chosen to maximize

‖diag(A(k+1))‖2
F + ‖diag(JA(k+1))‖2

F .

• D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices.
Electron. J. Linear Al. 10 (2003) 106–145.
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MAXIMIZATION ALGORITHM
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SYMPLECTIC ROTATIONS

R(i , j , φ, α) =



c −s

s̄ c

c −s

s̄ c



i

j

n + i

n + j

R(i , j , φ, α) =



c −s

c −s̄

s c

s̄ c



i

j − n

n + i

j
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PIVOT POSITIONS (SYMPLECTIC)

� � � � � � � �
� � � � � �
� � � �
� �



considering double rotations
 

� � � � � � � �
� � � � � � �
� � � � � �
� � � � �
� � � �

� � � �
� � �
� �
�
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PERPLECTIC ROTATIONS

R(i , j , φ, α) =



c −s

s̄ c

c s̄

−s c



i

j

2n − j + 1

2n − i + 1

R(i , j , φ, α) =



c −s

c s̄

s̄ c

−s c



i

2n − j + 1

j

2n − i + 1
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PIVOT POSITIONS (PERPLECTIC)
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REDUCTION TO CANONICAL FORM

Jacobi-type algorithm 1

Input: A ∈ C2n×2n ∈ S, Z0 = I
Output: structure-preserving unitary Z
Repeat

Select (ik , jk).
Find φk and αk for R(ik , jk , φk , αk).
A(k+1) = RH

k A(k)Rk

Zk+1 = ZkRk

Until convergence

• Cyclic pivot strategy

• Convergence condition:

|〈gradf (Z ),ZṘ(ik , jk , 0, αk)〉| ≥ η‖gradf (Z )‖F ,

where Ṙ(i , j , φ, α) = ∂
∂φR(i , j , φ, α) and f = fH or f = fP .
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CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian (or skew-Hamiltonian) and let (Zk)k be a
sequence of unitary symplectic matrices generated by the Jacobi
algorithm. Every accumulation point of (Zk)k is a stationary point
of function fH.

Theorem (BK, Faßbender, Saltenberger)

Let A be per-Hermitian (or perskew-Hermitian) and let (Zk)k be a
sequence of unitary perplectic matrices generated by the Jacobi
algorithm. Every accumulation point of (Zk)k is a stationary point
of function fP .

• M. Ishteva, P.-A. Absil, P. Van Dooren: Jacobi algorithm for the best low multilinear rank approximation
of symmetric tensors.
SIAM J. Matrix Anal. Appl. 34(2) (2013) 651–672.
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THE CLOSEST NORMAL MATRIX
• Let A be Hamiltonian. Analogy with unstructured case:

(i) Find Z that maximizes
fH(Z ) = ‖diag(ZHAZ )‖2

F + ‖diag(JZHAZ )‖2
F ,

(ii) Extract the canonical form,

(iii) Solution is given by X = Z

 � �
� �

ZH .

→ But this can produce a matrix that is not normal!

• We set
fD(Z ) = ‖diag(ZHAZ )‖2

F .

(i) Find Z that maximizes fD.

(ii) Extract the diagonal.

(iii) Solution is given by X = Z

 �
�

ZH .
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ADDITIONAL ROTATIONS
→ To find Z that maximizes fD we add new rotations to the
Jacobi algorithm.

• Symplectic rotations

R(i , n + i , φ, 0) =

 cosφ − sinφ

sinφ cosφ

 i

n + i
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→ To find Z that maximizes fD we add new rotations to the
Jacobi algorithm.

• Symplectic rotations

R(i , n + i , φ, 0) =

 cosφ − sinφ

sinφ cosφ

 i

n + i

• Perplectic rotations

R(i , 2n − i + 1, φ,−π
2

) =

 cosφ ı sinφ

ı sinφ cosφ

 i

2n − i + 1
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DIAGONALIZATION ALGORITHM
Jacobi-type algorithm 2

Input: A ∈ C2n×2n ∈ S, Z0 = I
Output: structure-preserving unitary Z
Repeat

Select (ik , jk). (additional pivot positions are included)
Find φk and αk for R(ik , jk , φk , αk).
A(k+1) = RH

k A(k)Rk

Zk+1 = ZkRk

Until convergence

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian and let (Zk)k be a sequence of unitary
symplectic matrices generated by the Jacobi algorithm
with additional rotations. Every accumulation point of (Zk)k is a
stationary point of function fD.
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NUMERICAL EXAMPLES — Canonical form
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Random Hamiltonian 20× 20 matrix.
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Reduction to the canonical form (Algorithm 1) after 10 cycles.
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NUMERICAL EXAMPLES — Diagonalization
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Erna Begović Kovač The closest normal structured matrix 21 / 24



NUMERICAL EXAMPLES — Diagonalization
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Diagonalization (Algorithm 2) after 10 cycles.
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NUMERICAL EXAMPLES — Distance from normal matrix
We take normal Hamiltonian X and set H = X + E , such that H is
Hamiltonian, but not normal.

Algorithm 2 on H gives its closest normal Y .
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NUMERICAL EXAMPLES — Departure from normality
For any matrix A its Schur form

UHAU = T = D + N

exists, where U is unitary, D = diag(T ) and N is strictly upper triangular.
The quantity ∆(A) = ‖N‖F is referred to as A’s departure from
normality.

We compare ∆(H) and off(H(20)) where H(20) is obtained by 20

iterations of Algorithm 2 and off(A) = ‖A− diag(A)‖2
F .

Example i Size of Hi ∆(Hi ) off(H
(20)
i )

1 10 7.1 · 10+0 6.4 · 10+0

2 10 4.0 · 10−3 3.1 · 10−3

3 20 3.5 · 10−5 3.1 · 10−5

4 20 5.3 · 10+2 4.4 · 10+2

5 30 7.7 · 10+0 6.7 · 10+0

6 30 1.0 · 10−1 9.0 · 10−2

7 40 7.9 · 10−7 6.6 · 10−7

8 40 3.1 · 10+3 2.7 · 10+3

9 50 1.1 · 10−2 9.5 · 10−3

10 100 7.8 · 10−7 6.8 · 10−7
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NUMERICAL EXAMPLES — Convergence of Algorithm 1
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Number of iterations
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Normal Hamiltonian 20 × 20
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Random Hamiltonian 20 × 20

Γ(A) := ||diag(ZHAZ )||2F + ||diag(JZHAZ )||2F

THANK YOU!
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