The closest normal structured matrix

Erna Begović Kovač

University of Zagreb ebegovic@fkit.hr

Joint work with Heike Faßbender and Philip Saltenberger (TU Braunschweig)

GAMM ANLA18 10 October 2018

This work has been supported in part by Croatian Science Foundation under the project 3670.

OUTLINE

- Introduction
- Structured matrices and structure-preserving transformations
- Jacobi-type algorithm for the reduction to the canonical form
- Finding the closest normal matrix with a given structure
- Numerical examples

E. Begović Kovač, H. Faßbender, P. Saltenberger: On normal and structured matrices under unitary structure-preserving transformations. arXiv:1810.03369 [math.NA]

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^H = X^HX\}$
- X is normal if and only if there is unitary U such that

$$U^{H}XU = \left[\begin{array}{c} \searrow \end{array} \right].$$

• A. Ruhe: *Closest normal matrix finally found!* BIT 27 (4) (1987) 585–598.

Does NOT preserve given matrix structure.

INTRODUCTION

- Set of normal matrices: $\mathcal{N} = \{X : XX^H = X^HX\}$
- X is normal if and only if there is unitary U such that

$$U^{H}XU = \left[\begin{array}{c} \searrow \end{array} \right].$$

 A. Ruhe: Closest normal matrix finally found! BIT 27 (4) (1987) 585–598.
Does NOT preserve given matrix structure.

Suppose that A has a structure S, $A \in S$.

Minimization problem:

$$\min\left\{\|A-X\|_F^2 : X \in \mathcal{N} \cap \mathcal{S}\right\}$$

MAXIMIZATION PROBLEM

Theorem (Causey 1964, Gabriel 1979)

Let $A \in \mathbb{C}^{n \times n}$ and let $X = ZDZ^{H}$, where Z is unitary and D is diagonal. Then X is a nearest normal matrix to A in the Frobenius norm if and only if (a) $\|\text{diag}(Z^{H}AZ)\|_{F} = \max_{QQ^{H}=I} \|\text{diag}(Q^{H}AQ)\|_{F}$, and

(b) $D = \operatorname{diag}(Z^H A Z)$.

 \rightarrow Finding the closest normal matrix is equivalent to finding an unitary transformation that maximizes Frobenius norm of the diagonal.

 \rightarrow This theorem has to be modified to fulfill structure-preserving requirements.

• N. J. Higham: *Matrix nearness problem and applications*. In Applications of Matrix theory 22 (1989) 1–27.

Erna Begović Kovač

STRUCTURED MATRICES

• Hamiltonian A (J-Hermitian):

$$(JA)^{H} = JA$$
, that is $A^{H} = JAJ$, where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$.

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & -A_{11}^H \end{bmatrix}, \qquad A_{12}^H = A_{12}, \ A_{21}^H = A_{21}.$$

STRUCTURED MATRICES

• **Hamiltonian** A (J-Hermitian):

$$(JA)^H = JA$$
, that is $A^H = JAJ$, where $J = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$.

-

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & -A_{11}^H \end{bmatrix}, \qquad A_{12}^H = A_{12}, \ A_{21}^H = A_{21}.$$

• **Skew-Hamiltonian** A (J-skew-Hermitian):

$$(JA)^H = -JA$$
, that is $A^H = -JAJ$.

We can write it as

$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{11}^H \end{bmatrix}, \qquad A_{12}^H = -A_{12}, \ A_{21}^H = -A_{21}.$$

• For every skew-Hamiltonian W there is Hamiltonian H (and viceversa) such that W = iH.

Erna Begović Kovač

STRUCTURED MATRICES-cont.

• **Per-Hermitian** A (F-Hermitian):

$$(FA)^{H} = FA$$
, that is $A^{H} = FAF$,
where $F = \begin{bmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & 0 \\ 0 & \ddots & & \vdots \\ 1 & 0 & \cdots & 0 \end{bmatrix}$.

 \rightarrow Hermitian about its anti-diagonal

• **Perskew-Hermitian** *A* (*F*-skew-Hermitian):

$$(FA)^H = -FA$$
, that is $A^H = -FAF$.

 \rightarrow Skew-Hermitian about its anti-diagonal

• For every perskew-Hermitian K there is per-Hermitian M (and viceversa) such that K = iM.

Erna Begović Kovač

STRUCTURE-PRESERVING TRANSFORMATIONS

• For Hamiltonian and skew-Hamiltonian

M is **symplectic** if $M^H J M = J$.

• For per-Hermitian and perskew-Hermitian

M is **perplectic** if $M^H F M = F$.

CANONICAL FORM — HAMILTONIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal Hamiltonian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary symplectic U such that

$$U^{H}AU = \begin{bmatrix} D_{1} & 0 & 0 & 0\\ 0 & D_{2} & 0 & D_{3}\\ 0 & 0 & -D_{1}^{H} & 0\\ 0 & -D_{3} & 0 & D_{2} \end{bmatrix},$$

where D_j , j = 1, 2, 3 diagonal matrices, $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in i \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

$$U^{H}AU = \begin{bmatrix} \Lambda_{1} & \Lambda_{2} \\ -\Lambda_{2} & -\Lambda_{1}^{H} \end{bmatrix} = \begin{bmatrix} \ddots & \ddots \\ \ddots & \ddots \end{bmatrix} =: \Lambda_{\mathcal{H}}$$

CANONICAL FORM — PER-HERMITIAN

Theorem (BK, Faßbender, Saltenberger)

For every normal per-Hermitian $A \in \mathbb{C}^{2n \times 2n}$ there is unitary perplectic U such that

$$U^{H}AU = \begin{bmatrix} D_{1} & 0 & 0 & 0 \\ 0 & D_{2} & D_{3} & 0 \\ 0 & FD_{3}F & FD_{2}F & 0 \\ 0 & 0 & 0 & FD_{1}F \end{bmatrix},$$

where D_1 i D_2 are diagonal, and D_3 is antidiagonal matrix, $D_1 \in \mathbb{C}^{n_1 \times n_1}$, $D_2 \in \mathbb{R}^{n_2 \times n_2}$, $D_3 \in \mathbb{R}^{n_2 \times n_2}$, $n_1 + n_2 = n$.

$$U^{H}AU = \begin{bmatrix} \Lambda_{1} & \Lambda_{2}F \\ F\Lambda_{2} & F\Lambda_{1}^{H}F \end{bmatrix} = \begin{bmatrix} \checkmark & \checkmark \\ \checkmark & \checkmark \end{bmatrix} =: \Lambda_{\mathcal{P}}$$

MAXIMIZATION ALGORITHM

$$\max_{ZZ^{H}=I, Z \in Sp_{2n}(\mathbb{C})} \left\{ f_{\mathcal{H}}(Z) := \| \operatorname{diag}(Z^{H}AZ) \|_{F}^{2} + \| \operatorname{diag}(JZ^{H}AZ) \|_{F}^{2} \right\}$$

• Iterative algorithm of the form

$$A^{(k+1)} = R_k^H A^{(k)} R_k, \quad k \ge 0.$$

• Transformations R_k are structure-preserving rotations obtained by embedding two Jacobi rotations

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} := \begin{bmatrix} \cos \phi & -e^{i\alpha} \sin \phi \\ e^{-i\alpha} \sin \phi & \cos \phi \end{bmatrix} \quad \text{in } I_{2n}.$$

They are chosen to maximize

$$\|\text{diag}(A^{(k+1)})\|_{F}^{2} + \|\text{diag}(JA^{(k+1)})\|_{F}^{2}$$

 D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begović Kovač

MAXIMIZATION ALGORITHM

$$\max_{ZZ^{H}=I, Z \in Pp_{2n}(\mathbb{C})} \left\{ f_{\mathcal{P}}(Z) := \| \operatorname{diag}(Z^{H}AZ) \|_{F}^{2} + \| \operatorname{diag}(FZ^{H}AZ) \|_{F}^{2} \right\}$$

• Iterative algorithm of the form

$$A^{(k+1)} = R_k^H A^{(k)} R_k, \quad k \ge 0.$$

• Transformations R_k are structure-preserving rotations obtained by embedding two Jacobi rotations

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} := \begin{bmatrix} \cos \phi & -e^{i\alpha} \sin \phi \\ e^{-i\alpha} \sin \phi & \cos \phi \end{bmatrix} \quad \text{in } I_{2n}.$$

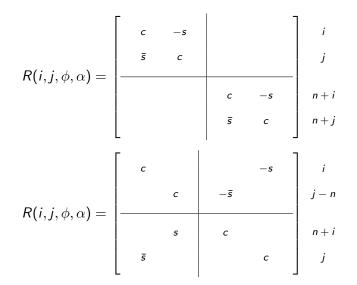
They are chosen to maximize

$$\|\text{diag}(A^{(k+1)})\|_F^2 + \|\text{diag}(FA^{(k+1)})\|_F^2.$$

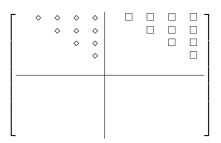
 D. S. Mackey, N. Mackey, F. Tisseur: Structured tools for structured matrices. Electron. J. Linear Al. 10 (2003) 106–145.

Erna Begović Kovač

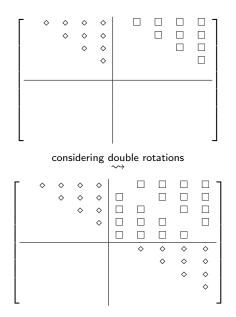
SYMPLECTIC ROTATIONS



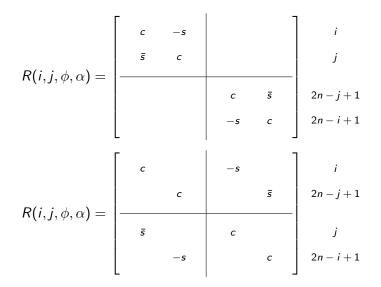
PIVOT POSITIONS (SYMPLECTIC)



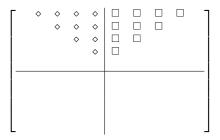
PIVOT POSITIONS (SYMPLECTIC)



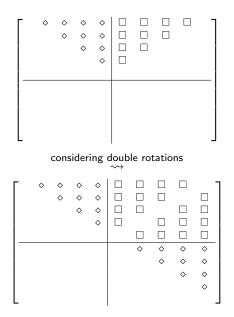
PERPLECTIC ROTATIONS



PIVOT POSITIONS (PERPLECTIC)



PIVOT POSITIONS (PERPLECTIC)



REDUCTION TO CANONICAL FORM

Jacobi-type algorithm 1

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ **Output:** structure-preserving unitary Z REPEAT Select (i_k, j_k) . Find ϕ_k and α_k for $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^H A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

REDUCTION TO CANONICAL FORM

Jacobi-type algorithm 1

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ Output: structure-preserving unitary Z REPEAT Select (i_k, j_k) . Find ϕ_k and α_k for $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^H A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

- Cyclic pivot strategy
- Convergence condition:

 $|\langle \operatorname{grad} f(Z), Z\dot{R}(i_k, j_k, 0, \alpha_k)\rangle| \geq \eta \|\operatorname{grad} f(Z)\|_F,$

where $\dot{R}(i, j, \phi, \alpha) = \frac{\partial}{\partial \phi} R(i, j, \phi, \alpha)$ and $f = f_{\mathcal{H}}$ or $f = f_{\mathcal{P}}$.

Erna Begović Kovač

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian (or skew-Hamiltonian) and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be per-Hermitian (or perskew-Hermitian) and let $(Z_k)_k$ be a sequence of unitary perplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{P}}$.

CONVERGENCE

Theorem (BK, Faßbender, Saltenberger)

Let A be Hamiltonian (or skew-Hamiltonian) and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{H}}$.

Theorem (BK, Faßbender, Saltenberger)

Let A be per-Hermitian (or perskew-Hermitian) and let $(Z_k)_k$ be a sequence of unitary perplectic matrices generated by the Jacobi algorithm. Every accumulation point of $(Z_k)_k$ is a stationary point of function $f_{\mathcal{P}}$.

 M. Ishteva, P.-A. Absil, P. Van Dooren: Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors.
SIAM J. Matrix Anal. Appl. 34(2) (2013) 651–672.

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
 - (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = \|\text{diag}(Z^H A Z)\|_F^2 + \|\text{diag}(J Z^H A Z)\|_F^2$
 - (ii) Extract the canonical form,

 \rightarrow But this can produce a matrix that is not normal!

THE CLOSEST NORMAL MATRIX

- Let A be Hamiltonian. Analogy with unstructured case:
 - (i) Find Z that maximizes $f_{\mathcal{H}}(Z) = \|\text{diag}(Z^H A Z)\|_F^2 + \|\text{diag}(J Z^H A Z)\|_F^2$
 - (ii) Extract the canonical form,

 \rightarrow But this can produce a matrix that is not normal!

• We set

$$f_{\mathcal{D}}(Z) = \|\mathsf{diag}(Z^H A Z)\|_F^2.$$

- (i) Find Z that maximizes $f_{\mathcal{D}}$.
- (ii) Extract the diagonal.

(iii) Solution is given by
$$X = Z \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} Z^{H}$$
.

Erna Begović Kovač

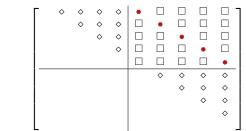
 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations



 $\sim \rightarrow$

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

$$R(i,2n-i+1,\phi,-\frac{\pi}{2}) = \begin{bmatrix} \cos\phi & i\sin\phi \\ i\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} i \\ 2n-i+1 \end{bmatrix}$$

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

~

 \rightarrow To find Z that maximizes $f_{\mathcal{D}}$ we add new rotations to the Jacobi algorithm.

• Symplectic rotations

$$R(i, n+i, \phi, 0) = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}^{i} n+i$$

• Perplectic rotations

$$R(i,2n-i+1,\phi,-\frac{\pi}{2}) = \begin{bmatrix} \cos\phi & i\sin\phi \\ i\sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} i \\ 2n-i+1 \end{bmatrix}$$

DIAGONALIZATION ALGORITHM Jacobi-type algorithm 2

Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ **Output:** structure-preserving unitary Z REPEAT Select (i_k, j_k) . (additional pivot positions are included) Find ϕ_k and α_k for $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^H A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

DIAGONALIZATION ALGORITHM Jacobi-type algorithm 2

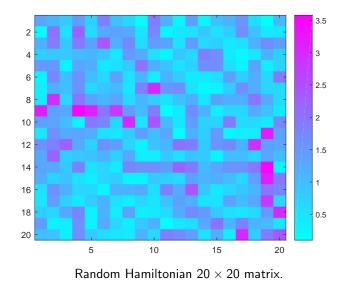
Input: $A \in \mathbb{C}^{2n \times 2n} \in S$, $Z_0 = I$ **Output:** structure-preserving unitary Z REPEAT Select (i_k, j_k) . (additional pivot positions are included) Find ϕ_k and α_k for $R(i_k, j_k, \phi_k, \alpha_k)$. $A^{(k+1)} = R_k^H A^{(k)} R_k$ $Z_{k+1} = Z_k R_k$ UNTIL convergence

Theorem (BK, Faßbender, Saltenberger)

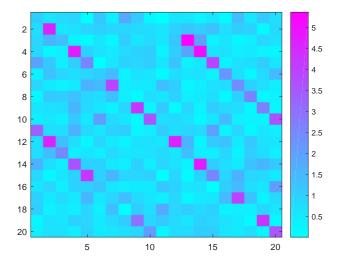
Let A be Hamiltonian and let $(Z_k)_k$ be a sequence of unitary symplectic matrices generated by the Jacobi algorithm with additional rotations. Every accumulation point of $(Z_k)_k$ is a stationary point of function f_D .

Erna Begović Kovač

NUMERICAL EXAMPLES — Canonical form

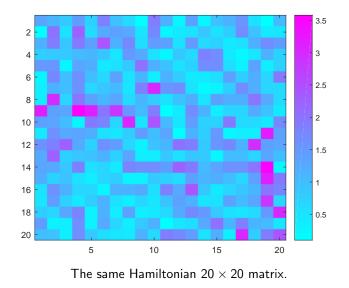


NUMERICAL EXAMPLES — Canonical form

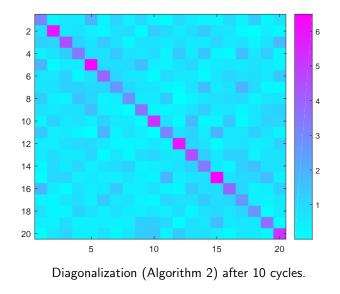


Reduction to the canonical form (Algorithm 1) after 10 cycles.

NUMERICAL EXAMPLES — Diagonalization



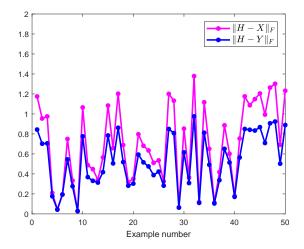
NUMERICAL EXAMPLES — Diagonalization



NUMERICAL EXAMPLES — Distance from normal matrix

We take normal Hamiltonian X and set H = X + E, such that H is Hamiltonian, but not normal.

Algorithm 2 on H gives its closest normal Y.



NUMERICAL EXAMPLES — Departure from normality

For any matrix A its Schur form

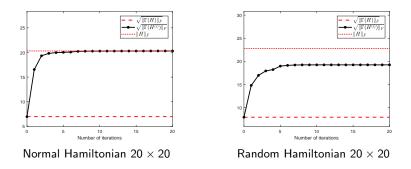
$$U^{H}AU = T = D + N$$

exists, where U is unitary, D = diag(T) and N is strictly upper triangular. The quantity $\Delta(A) = ||N||_F$ is referred to as A's departure from normality.

We compare $\Delta(H)$ and off $(H^{(20)})$ where $H^{(20)}$ is obtained by 20 iterations of Algorithm 2 and off $(A) = ||A - \text{diag}(A)||_F^2$.

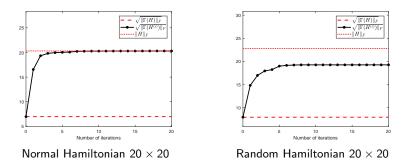
Example <i>i</i>	Size of H_i	$\Delta(H_i)$	$off(H_i^{(20)})$
1	10	$7.1\cdot10^{+0}$	$6.4\cdot10^{+0}$
2	10	$4.0 \cdot 10^{-3}$	$3.1 \cdot 10^{-3}$
3	20	$3.5 \cdot 10^{-5}$	$3.1\cdot10^{-5}$
4	20	$5.3\cdot10^{+2}$	$4.4 \cdot 10^{+2}$
5	30	$7.7\cdot10^{+0}$	$6.7\cdot10^{+0}$
6	30	$1.0\cdot10^{-1}$	$9.0 \cdot 10^{-2}$
7	40	$7.9 \cdot 10^{-7}$	$6.6 \cdot 10^{-7}$
8	40	$3.1\cdot10^{+3}$	$2.7\cdot10^{+3}$
9	50	$1.1 \cdot 10^{-2}$	$9.5 \cdot 10^{-3}$
10	100	$7.8 \cdot 10^{-7}$	$6.8 \cdot 10^{-7}$

NUMERICAL EXAMPLES — Convergence of Algorithm 1



 $\Gamma(A) := ||\mathsf{diag}(Z^H A Z)||_F^2 + ||\mathsf{diag}(J Z^H A Z)||_F^2$

NUMERICAL EXAMPLES — Convergence of Algorithm 1



 $\Gamma(A) := ||\mathsf{diag}(Z^H A Z)||_F^2 + ||\mathsf{diag}(J Z^H A Z)||_F^2$

THANK YOU!

Erna Begović Kovač